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How are IAMs evaluated? To what end? Why is IAM
evaluation less visible than climate model evaluation?

GCMs

Evaluation of
Climate Models
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IAMs

(a) Observed and CMIP5 simulated global mean surface air temperature
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Evaluation is about whether models generate the
“right behaviour for the right reasons”

structural validity behavioural validity
model is an accurate model predictions are
representation of the system consistent with
response being modelled observational data
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Behavioural validity can not be demonstrated for
simulation models of dynamic, complex systems

structural validity behavioural validity
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Structural validity can not be demonstrated for
simulation models of dynamic, complex systems

structural validity behavioural validity
model is an accurate model predictions are
representation of the system consistent with
response being modelled observational data
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|AM evaluation is an open-ended process of testing,
learning & improving a model and its performance

Evaluation criteria for IAMs

is model purpose and design consistent with

appropriateness :
Pprop the research question?

interpretability are model results clearly mterpretgble. in light
of model structure and parameterisation?

verifiabilit are model results repeatable or

y is model structure accessible to 3" parties?

credibility is model seen as good enough for its intended
purpose by both users and modellers?
do model insights help understand

usefulness

uncertainties, trade-offs, alternatives?
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Different evaluation methods are used with IAMs,
particularly to test structural validity
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economy \ = [
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behavioural validity

structural validity

model historical historical
model checks , , imulati
inter-comparisons trends simulations
transparent diagnostic generalisable
documentation indicators historical patterns
expert sensitivity simple
review analysis models
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“Climate models ... reproduce many important
aspects of observed climate ...” [IPCC AR1 - AR5]

(a) Observed and CMIP5 simulated global mean surface air temperature
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* many simulated (un-tuned) quantities
for different processes & scales
e statistical measures of performance
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Historical simulations are not a common feature of
|JAM evaluation

(a) Observed and CMIP5 simulated global mean surface air temperature 100
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* many simulated (un-tuned) quantities ¢ no long-run simulations of
for different processes & scales aggregate system variables
e statistical measures of performance
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Historical simulations are not a common feature of
|JAM evaluation

, . Residential energy - Gas
(a) Observed and CMIP5 simulated global mean surface air temperature
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* many simulated (un-tuned) quantities ¢ very limited in scope
for different processes & scales (process, time horizon)
* statistical measures of performance ¢ divergence -> A parameter
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Historical simulations are not a common feature of
|JAM evaluation

, , Residential energy - Gas
(a) Observed and CMIP5 simulated global mean surface air temperature
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* many simulated (un-tuned) quantities ¢ very limited in scope
for different processes & scales (process, time horizon)
 statistical measures of performance ¢ divergence -> A parameter
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Historical simulations are not a common feature of
|JAM evaluation

Residential energy - Gas
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The historical record can be used for IAM evaluation
in other ways - generalisable historical patterns

Annual Fuel Wood Production

van Ruijven et al. 2008 | Wilson et al. 2012 | Schwanitz 2013 | Leimbach et al. 2015
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useful learning exercise ...
but what then?

no clear methodology or metrics
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* very limited in scope
(process, time horizon)
e divergence -> A parameter
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Simple models help understand representations of
key processes embedded in more complex models
GCMs

Mid-1970s  Mid-1980s FAR SAR TAR AR4 AR5

smoree QT . . W s "Acomplex model may
. AP © be more realistic, yet ...
o DD ° as we add more factors
\ A'A to a model, the certainty
« ofits predictions may
o, 8 decrease even as our

Atmospheric
Chemistry

intuitive faith in the
model increases.”

Land Ice

Mid-1970s  Mid-1980s FAR SAR TAR AR4 AR5

* elegance vs. elaboration
 simpler models preserved in a
‘hierarchy of models’
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Simple models help understand representations of
key processes ... but are not common in IAMs
GCMs IAMs
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* elegance vs. elaboration e ‘SIMPLE’ global agriculture model
* simpler models preserved in a - biophysical, economic

‘hierarchy of models’  historical simulations (1961-2000)
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Model inter-comparison projects explore structural
uncertainty (across different model representations)

GCMs e.g., CMIP5

Snow cover extent change
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 harmonised experiments & results
 model performance metrics
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Model inter-comparison is a long tradition for IAMs
(9 MIPs contributed 95% of AR5 mitigation scenarios)
GCMs e.g., CMIP5 IAMs

$50 carbon tax (2010), increasing 4% per year——World
Snow cover extent change
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 harmonised experiments & results ¢ emphasis on robust results
 model performance metrics e diagnostic indicators (recent)

e |[ink structure <-> behaviour
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Evaluation research for GCMs is generally more
developed and prominently reported than for IAMs

evaluation method GCMs vs. IAMs GCM vs. IAM differences
historical ‘ o (1) modelled system
simulations - underlying principles

- observational data

generalisable ‘

historical patterns (2) domain of application

- uniqueness of insights

simple : :
P ‘ . - expertise of policy users
models

model inter- ‘ ‘
comparisons

+ sensitivity analysis
+ expert review
+ documentation ...
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Each evaluation method has characteristic
strengths and weaknesses

evaluation method strengths weaknesses

historical e.g., use of e.g., limited applicability
simulations observations (time horizon, processes)
generalisable e.g., use of observed e.g., unclear implications for
historical patterns dynamics structural validity

simple e.g., insights robust to e.g., attribution of divergence
models structural uncertainty to model differences

model inter- e.g., understanding of e.g., lack of realism
comparisons key system processes

+ sensitivity analysis
+ expert review
+ documentation Tyndall’Centre’

for Climate Change Research



Each evaluation method has strengths & weaknesses
.. and contributes more to certain evaluation criteria

appropriate- interpret- evaluation criteria
evaluation method ness ability verifiability credibility usefulness
historical ~ ~
simulations v
generalisable ~ ~
historical patterns
simple
~N ~N
models v 4
model inter-
comparisons v v v

+ sensitivity analysis

+ expert review
+ documentation ... T\/ﬂfdﬁ![ cChegl;\'[re



Conclusion: Systematic & more prominent evaluation
effort to strengthen and maintain confidence in IAMs

* systematic:
multiple methods concurrently

Evaluation of
Climate Models

* prominent:
concerted, synthesis products

* learning:

(a) Observed and CMIP5 simulated global mean surface air temperature

insights from GCMs A . 53 |
ongoing articulation of the grounds £ = Ll il SubAmal™ ' =
on which IAMs can be declared RS ik AN B
good enough for their intended uses oL . . , =
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