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4.3. How well are we capturing variability across states?

In this section we focus on comparing residential sector pro-
jections at the state level. We focus on 2005 for which we have both
reported fuel-consumption at the state level state-level as well as
service-level estimates developed for GCAM calibration. Energy
consumption by service from RECS is only available for major
geographical regions, e.g., New England, West North Central, Pa-
cific, etc. as well as for the four most populous states- New York,
Florida, Texas, and California. State-level estimates for 1990 and
2005 were originally created for purposes of GCAM model cali-
bration by downscaling the regional RECS data to the state level on
the basis of population, GDP, state-level fuel consumption, and

population weighted heating and cooling degree-days. We are,
therefore, comparing a model projection with state-level estimates
that, in many cases, are produced using the same assumptions as
used for the modeling. This is unavoidable, but may overestimate
the level of agreement.

As was the case with national level results, the projection for
2005 tends to underestimate electricity consumption and over-
estimate gas consumption (Fig. 7). The electricity consumption
underestimate is fairly consistent across states, with the projection
showing an overestimate of larger than 5% for only three states. The
largest absolute underestimate for electricity is for states that also
have high electricity consumption: California, Florida, and Texas.
These are also states with a high number of cooling degree days.

Fig. 4. Historical and projected final energy by fuel for residential sector.

Fig. 5. Heating and cooling energy per unit floorspace (FS) normalized for degree days.
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der Sluijs et al., 2001) (see Table 1). Below, we
elaborate on the key-issues, evaluate whether
and how they are incorporated in the SRES
models and discuss their relevance for global
energy models.

(a) Developments in the energy system

(i) Transition from traditional to commercial
fuels

Traditional biomass, such as fuel wood,
dung, agricultural waste, crop residues and
charcoal constitute a major source of energy
in the developing world. In 2000, 52% of the to-
tal population of developing countries relied on
traditional biomass as the main source of en-
ergy for cooking and heating (IEA, 2002). Tra-
ditional biomass combustion causes indoor air
pollution which triggers various adverse health
effects and an estimated 1.6 million deaths per
year (WHO, 2006). Issues related to fuel wood
are limited availability and impact on defores-
tation (Arnold, Kohlin, & Persson, 2006).

Data and stylized facts. Official statistics on
fuel wood include only production, not con-
sumption (FAO, 2005) (but they can easily be
considered equal). Unfortunately, however,
the reliability of statistics on this topic can be
questioned, as most fuel wood is gathered from
woodlands and never accounted for in statis-
tics. Another data problem concerning tradi-
tional fuel is that global statistic databases
account only for fuel wood, not for other forms
of traditional biomass; dung, agricultural waste
and crop residues are only taken into account
by survey studies (FAO, 2005; Xiaohua &
Zhenmin, 2005).

Given these caveats, the available data show
a generally decreasing trend in fuel wood pro-
duction per capita with increasing income levels
in all world regions and several Asian countries
(Figures 5 and 6, left graphs). Sub-Saharan
Africa also shows a decline in per capita fuel
wood production in time, although it faced a
decreasing GDP/capita (PPP) in the described
period, indicating the relevance of other drivers
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Figure 5. Left: Fuel wood production per capita versus GDP/capita (PPP) for several developing world regions, data
from 1975 to 2000. Right: Absolute annual fuel wood production for several developing world regions. Data from FAO

(2005) and World Bank, 2004.
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Figure 6. left: Fuel wood production per capita versus GDP/capita (PPP) for several Asian countries for the period
1975–2000. Right: Absolute annual fuel wood production for several Asian countries. Data from FAO (2005) and World

Bank, 2004.
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•  useful	
  learning	
  exercise	
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but	
  what	
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  clear	
  methodology	
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  metrics	
  

4.3. How well are we capturing variability across states?

In this section we focus on comparing residential sector pro-
jections at the state level. We focus on 2005 for which we have both
reported fuel-consumption at the state level state-level as well as
service-level estimates developed for GCAM calibration. Energy
consumption by service from RECS is only available for major
geographical regions, e.g., New England, West North Central, Pa-
cific, etc. as well as for the four most populous states- New York,
Florida, Texas, and California. State-level estimates for 1990 and
2005 were originally created for purposes of GCAM model cali-
bration by downscaling the regional RECS data to the state level on
the basis of population, GDP, state-level fuel consumption, and

population weighted heating and cooling degree-days. We are,
therefore, comparing a model projection with state-level estimates
that, in many cases, are produced using the same assumptions as
used for the modeling. This is unavoidable, but may overestimate
the level of agreement.

As was the case with national level results, the projection for
2005 tends to underestimate electricity consumption and over-
estimate gas consumption (Fig. 7). The electricity consumption
underestimate is fairly consistent across states, with the projection
showing an overestimate of larger than 5% for only three states. The
largest absolute underestimate for electricity is for states that also
have high electricity consumption: California, Florida, and Texas.
These are also states with a high number of cooling degree days.

Fig. 4. Historical and projected final energy by fuel for residential sector.

Fig. 5. Heating and cooling energy per unit floorspace (FS) normalized for degree days.
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elaborate on the key-issues, evaluate whether
and how they are incorporated in the SRES
models and discuss their relevance for global
energy models.

(a) Developments in the energy system

(i) Transition from traditional to commercial
fuels

Traditional biomass, such as fuel wood,
dung, agricultural waste, crop residues and
charcoal constitute a major source of energy
in the developing world. In 2000, 52% of the to-
tal population of developing countries relied on
traditional biomass as the main source of en-
ergy for cooking and heating (IEA, 2002). Tra-
ditional biomass combustion causes indoor air
pollution which triggers various adverse health
effects and an estimated 1.6 million deaths per
year (WHO, 2006). Issues related to fuel wood
are limited availability and impact on defores-
tation (Arnold, Kohlin, & Persson, 2006).

Data and stylized facts. Official statistics on
fuel wood include only production, not con-
sumption (FAO, 2005) (but they can easily be
considered equal). Unfortunately, however,
the reliability of statistics on this topic can be
questioned, as most fuel wood is gathered from
woodlands and never accounted for in statis-
tics. Another data problem concerning tradi-
tional fuel is that global statistic databases
account only for fuel wood, not for other forms
of traditional biomass; dung, agricultural waste
and crop residues are only taken into account
by survey studies (FAO, 2005; Xiaohua &
Zhenmin, 2005).

Given these caveats, the available data show
a generally decreasing trend in fuel wood pro-
duction per capita with increasing income levels
in all world regions and several Asian countries
(Figures 5 and 6, left graphs). Sub-Saharan
Africa also shows a decline in per capita fuel
wood production in time, although it faced a
decreasing GDP/capita (PPP) in the described
period, indicating the relevance of other drivers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000

GDP/Capita, PPP (1995 Int $)

A
nn

ua
l F

ue
l W

oo
d 

P
ro

du
ct

io
n 

(m
3/

C
ap

) Latin America & Caribbean

Sub-Saharan Africa

Middle East & North Africa

South Asia

0

100

200

300

400

500

1970 1980 1990 2000

Years

A
nn

ua
l F

ue
l W

oo
d 

P
ro

du
ct

io
n 

(M
ill

io
n 

m
3)

 

Figure 5. Left: Fuel wood production per capita versus GDP/capita (PPP) for several developing world regions, data
from 1975 to 2000. Right: Absolute annual fuel wood production for several developing world regions. Data from FAO

(2005) and World Bank, 2004.
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Figure 6. left: Fuel wood production per capita versus GDP/capita (PPP) for several Asian countries for the period
1975–2000. Right: Absolute annual fuel wood production for several Asian countries. Data from FAO (2005) and World

Bank, 2004.
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  models’	
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Chapter 1 Introduction

144

in orbit for about three decades, but these were not originally designed 
for climate applications and therefore require careful re-calibration.

A major achievement in ocean observation is due to the implementa-
tion of the Argo global array of profiling floats system (GCOS, 2009). 
Deployment of Argo floats began in 2000, but it took until 2007 for 
numbers to reach the design target of 3000 floats. Since 2000 the ice-
free upper 2000 m of the ocean have been observed systematically 
for temperature and salinity for the first time in history, because both 
the Argo profiling float and surface drifting buoy arrays have reached 
global coverage at their target numbers (in January 2009, there were 
3291 floats operating). Biases in historical ocean data have been iden-
tified and reduced, and new analytical approaches have been applied 
(e.g., Willis et al., 2009). One major consequence has been the reduc-
tion of an artificial decadal variation in upper ocean temperature and 
heat content that was apparent in the observational assessment for 
AR4 (see Section 3.2). The spatial and temporal coverage of bioge-
ochemical measurements in the ocean has also expanded. Satellite 
observations for sea level (Sections 3.7 and 13.2), sea surface salinity 
(Section 3.3), sea ice (Section 4.2) and ocean colour have also been 
further developed over the past few years.

Progress has also been made with regard to observation of terrestri-
al Essential Climate Variables. Major advances have been achieved in 
remote sensing of soil moisture due to the launch of the Soil Moisture 
and Oceanic Salinity mission in 2009 but also due to new retrieval 
techniques that have been applied to data from earlier and ongoing 
missions (see Seneviratne et al., 2010 for a detailed review).  However, 
these measurements have limitations. For example, the methods fail 
under dense vegetation and they are restricted to the surface soil. 
Updated Advanced Very High Resolution Radiometer-based  Normalized 
Differenced Vegetation Index data provide new information on the 
change in vegetation. During the International Polar Year 2007–2009 
the number of borehole sites was significantly increased and therefore 
allows a better monitoring of the large-scale permafrost features (see 
Section 4.7).

1.5.2 Capabilities in Global Climate Modelling

Several developments have especially pushed the capabilities in mod-
elling forward over recent years (see Figure 1.13 and a more detailed 
discussion in Chapters 6, 7 and 9).
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Figure 1.13 |  The development of climate models over the last 35 years showing how the different components were coupled into comprehensive climate models over time. In 
each aspect (e.g., the atmosphere, which comprises a wide range of atmospheric processes) the complexity and range of processes has increased over time (illustrated by growing 
cylinders). Note that during the same time the horizontal and vertical resolution has increased considerably e.g., for spectral models from T21L9 (roughly 500 km horizontal resolu-
tion and 9 vertical levels) in the 1970s to T95L95 (roughly 100 km horizontal resolution and 95 vertical levels) at present, and that now ensembles with at least three independent 
experiments can be considered as standard.
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the number of borehole sites was significantly increased and therefore 
allows a better monitoring of the large-scale permafrost features (see 
Section 4.7).
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Figure 1. Overview of SIMPLE: the bottom panel (green) refers to supply regions for the aggregate crop commodity which are indexed by
continent. The upper panel (red) refers to demand regions, indexed by income level. The disposition of crops includes direct consumption,
feedstuff use and food processing, as well as biofuels. Adjustment of price in the global crop market ensures that long run supply equals
long run demand.

into two broad categories. On the one hand, there
are ‘partial equilibrium’ models which specialize on the
agricultural sector [3–5]. Often these models explicitly
incorporate biophysical linkages between crop production
and environmental variables. On the other hand, ‘general
equilibrium’ models place agriculture within the context of
the global economy, with most economic variables being
endogenous to the model [2, 6, 7]. This makes validation more
challenging and therefore most general equilibrium validation
exercises focus on a few key variables or sectors [8, 9].

Successful model validation is also confounded by the
fact that agricultural models must predict human behavior,
as well as market interactions between economic agents.
In particular, human decision making with respect to land
use is context dependent, prone to change over time and
poorly understood [10]. And even when these relationships
are known, there is a lack of global, disaggregated, consistent,
time series data for model estimation and evaluation of
the full modeling system. In response to this challenge,
some modelers have proposed a more targeted approach to
validation by focusing on a few key historical developments
or ‘stylized facts’ [11]. This suggests a useful way forward on
validating agricultural models.

Without doubt, the most important fact about global
agriculture over the past 50 years has been the tripling of crop
production, with only 14% of this total coming at the extensive
margin in the form of expansion of total arable lands [12].
This remarkable accomplishment contributed significantly to
moderating land-based emissions [13]. Whether or not this
historical performance can be replicated in the future is a cen-
tral question in long run analyses of global agriculture [3, 6].
Yet studies which relate model projections to historical
performance are quite sparse. For some models, evaluation of
past agricultural projections has been mainly focused on crop
production [14]. To our knowledge, only one global model

currently in use has tackled the issue of reproducing historical
cropland use [4].

We propose that long run global agricultural models of
land use should be evaluated by looking back at the historical
experience. In this letter, we illustrate the opportunity and the
challenge of undertaking such an historical validation exercise
using the SIMPLE model of global agriculture (Simplified
International Model of agricultural Prices Land use and
the Environment). As its name suggests, this framework is
designed to be as simple as possible while capturing the
major socioeconomic forces at work in determining global
cropland use. This makes it a useful test-bed for the design
of validation experiments. We test the model’s performance
against the historical period 1961–2006, illustrating what it
does well and what it does poorly. Using this 45-year period
as our laboratory, and focusing on the dimensions along which
the model performs well, we then explore how various model
restrictions which are embedded in many agricultural models
alter SIMPLE’s historical performance. These experiments
serve to highlight which assumptions are likely to be most
important from the point of view of cropland use. We then
conclude with suggestions on how best to advance the state
of our knowledge about modeling agricultural land use at the
global scale.

2. SIMPLE: a global model of agriculture

Figure 1 outlines the structure of SIMPLE. A complete
listing of equations and parameter values is provided in the
supplementary online materials (SOM) (available at stacks.
iop.org/ERL/8/034024/mmedia). The model’s components
can be divided between those contributing to the global
demand for crops and those contributing to global crop supply.
At the core of the supply-side are seven regional production
functions generating crop output for the following continental
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In light of all these results, it is very likely that the Arctic sea ice cover 
will continue to shrink and thin all year round during the 21st century 
as the annual mean global surface temperature rises. It is also likely 
that the Arctic Ocean will become nearly ice-free in September before 
the middle of the century for high GHG emissions such as those corre-
sponding to RCP8.5 (medium confidence). The potential irreversibility 
of the Arctic sea ice loss and the possibility of an abrupt transition 
toward an ice-free Arctic Ocean are discussed in Section 12.5.5.7.

In the SH, the decrease in sea ice extent between 1986–2005 and 
2081–2100 projected by the CMIP5 models as a group varies from 
16% for RCP2.6 to 67% for RCP8.5 in February and from 8% to 30% 
in September. In contrast with the NH, the absolute rate of decline is 
greatest in wintertime. Eisenman et al. (2011) argue that this hemi-
spheric asymmetry in the seasonality of sea ice loss is fundamentally 
related to the geometry of coastlines. For each forcing scenario, the 
relative changes in multi-model mean February and September Antarc-
tic sea ice volumes by the end of the century are of the same order as 
the corresponding ones for sea ice extent. About 75% of the available 
CMIP5 models reach a nearly ice-free state in February within this cen-
tury under RCP8.5 (about 60% under RCP4.5). For RCP8.5, only small 
portions of the Weddell and Ross Seas stay ice-covered in February 
during 2081–2100 in those models that do not project a seasonally 
ice-free Southern Ocean (see Figure 12.29c). Nonetheless, there is low 
confidence in these Antarctic sea ice projections because of the wide 
range of model responses and the inability of almost all of the models 
to reproduce the mean seasonal cycle, interannual variability and over-
all increase of the Antarctic sea ice areal coverage observed during the 
satellite era (see Section 9.4.3; Maksym et al., 2012; Turner et al., 2013; 
Zunz et al., 2013).

12.4.6.2 Changes in Snow Cover and Frozen Ground

Excluding ice sheets and glaciers, analyses of seasonal snow cover 
changes generally focus on the NH, where the configuration of the 
continents on the Earth induces a larger maximum seasonal snow 
cover extent (SCE) and a larger sensitivity of SCE to climate changes. 
Seasonal snow cover extent and snow water equivalent (SWE) respond 
to both temperature and precipitation. At the beginning and the end 
of the snow season, SCE decreases are closely linked to a shortening 
of the seasonal snow cover duration, while SWE is more sensitive to 
snowfall amount (Brown and Mote, 2009). Future widespread reduc-
tions of SCE, particularly in spring, are simulated by the CMIP3 models 
(Roesch, 2006; Brown and Mote, 2009) and confirmed by the CMIP5 
ensemble (Brutel-Vuilmet et al., 2013). The NH spring (March-April 
average) snow cover area changes are coherent in the CMIP5 models 
although there is considerable scatter. Relative to the 1986–2005 ref-
erence period, the CMIP5 models simulate a weak decrease of about 
7 ± 4% (one-m inter-model dispersion) for RCP2.6 during the last two 
decades of the 21st century, while SCE decreases of about 13 ± 4% are 
simulated for RCP4.5, 15 ± 5% for RCP6.0, and 25 ± 8% for RCP8.5 
(Figure 12.32). There is medium confidence in these numbers because 
of the considerable inter-model scatter mentioned above and because 
snow processes in global climate models are strongly simplified.

Projections for the change in annual maximum SWE are more mixed. 
Warming decreases SWE both by reducing the fraction of precipitation 

that falls as snow and by increasing snowmelt, but projected increas-
es in precipitation over much of the northern high latitudes during 
winter months act to increase snow amounts. Whether snow cover-
ing the ground will become thicker or thinner depends on the balance 
between these competing factors. Both in the CMIP3 (Räisänen, 2008) 
and in the CMIP5 models (Brutel-Vuilmet et al., 2013), annual maxi-
mum SWE tends to increase or only marginally decrease in the coldest 
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Figure 12.32 |  Northern Hemisphere spring (March to April average) snow cover 
extent change (in %) in the CMIP5 ensemble, relative to the simulated extent for the 
1986–2005 reference period. Thick lines mark the multi-model average, shading indi-
cates the inter-model spread (one standard deviation). The observed March to April 
average snow cover extent for the 1986–2005 reference period is 32.6·106 km2 (Brown 
and Robinson, 2011).
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Figure 12.33 |  Northern Hemisphere near-surface permafrost area, diagnosed for 
the available CMIP5 models by Slater and Lawrence (2013) following Nelson and Out-
calt (1987) and using 20-year average bias-corrected monthly surface air temperatures 
and snow depths. Thick lines: multi-model average. Shading and thin lines indicate the 
inter-model spread (one standard deviation). The black line for the historical period is 
diagnosed from the average of the European Centre for Medium range Weather Fore-
cast (ECMWF) reanalysis of the global atmosphere and surface conditions (ERA), Japa-
nese ReAnalysis (JRA), Modern Era Retrospective-analysis for Research and Applications 
(MERRA) and Climate Forecast System Reanalysis and Reforecast (CFSRR) reanalyses 
(Slater and Lawrence, 2013). Estimated present permafrost extent is between 12 and 
17 million km2 (Zhang et al., 2000).
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toward an ice-free Arctic Ocean are discussed in Section 12.5.5.7.
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of the seasonal snow cover duration, while SWE is more sensitive to 
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tions of SCE, particularly in spring, are simulated by the CMIP3 models 
(Roesch, 2006; Brown and Mote, 2009) and confirmed by the CMIP5 
ensemble (Brutel-Vuilmet et al., 2013). The NH spring (March-April 
average) snow cover area changes are coherent in the CMIP5 models 
although there is considerable scatter. Relative to the 1986–2005 ref-
erence period, the CMIP5 models simulate a weak decrease of about 
7 ± 4% (one-m inter-model dispersion) for RCP2.6 during the last two 
decades of the 21st century, while SCE decreases of about 13 ± 4% are 
simulated for RCP4.5, 15 ± 5% for RCP6.0, and 25 ± 8% for RCP8.5 
(Figure 12.32). There is medium confidence in these numbers because 
of the considerable inter-model scatter mentioned above and because 
snow processes in global climate models are strongly simplified.

Projections for the change in annual maximum SWE are more mixed. 
Warming decreases SWE both by reducing the fraction of precipitation 

that falls as snow and by increasing snowmelt, but projected increas-
es in precipitation over much of the northern high latitudes during 
winter months act to increase snow amounts. Whether snow cover-
ing the ground will become thicker or thinner depends on the balance 
between these competing factors. Both in the CMIP3 (Räisänen, 2008) 
and in the CMIP5 models (Brutel-Vuilmet et al., 2013), annual maxi-
mum SWE tends to increase or only marginally decrease in the coldest 
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Figure 12.32 |  Northern Hemisphere spring (March to April average) snow cover 
extent change (in %) in the CMIP5 ensemble, relative to the simulated extent for the 
1986–2005 reference period. Thick lines mark the multi-model average, shading indi-
cates the inter-model spread (one standard deviation). The observed March to April 
average snow cover extent for the 1986–2005 reference period is 32.6·106 km2 (Brown 
and Robinson, 2011).
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Figure 12.33 |  Northern Hemisphere near-surface permafrost area, diagnosed for 
the available CMIP5 models by Slater and Lawrence (2013) following Nelson and Out-
calt (1987) and using 20-year average bias-corrected monthly surface air temperatures 
and snow depths. Thick lines: multi-model average. Shading and thin lines indicate the 
inter-model spread (one standard deviation). The black line for the historical period is 
diagnosed from the average of the European Centre for Medium range Weather Fore-
cast (ECMWF) reanalysis of the global atmosphere and surface conditions (ERA), Japa-
nese ReAnalysis (JRA), Modern Era Retrospective-analysis for Research and Applications 
(MERRA) and Climate Forecast System Reanalysis and Reforecast (CFSRR) reanalyses 
(Slater and Lawrence, 2013). Estimated present permafrost extent is between 12 and 
17 million km2 (Zhang et al., 2000).
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